PfCRT and PfMDR1 modulate interactions of artemisinin derivatives and ion channel blockers

نویسندگان

  • Richard T. Eastman
  • Pwint Khine
  • Ruili Huang
  • Craig J. Thomas
  • Xin-zhuan Su
چکیده

Treatment of the symptomatic asexual stage of Plasmodium falciparum relies almost exclusively on artemisinin (ART) combination therapies (ACTs) in endemic regions. ACTs combine ART or its derivative with a long-acting partner drug to maximize efficacy during the typical three-day regimen. Both laboratory and clinical studies have previously demonstrated that the common drug resistance determinants P. falciparum chloroquine resistance transporter (PfCRT) and multidrug resistance transporter (PfMDR1) can modulate the susceptibility to many current antimalarial drugs and chemical compounds. Here we investigated the parasite responses to dihydroartemisinin (DHA) and various Ca(2+) and Na(+) channel blockers and showed positively correlated responses between DHA and several channel blockers, suggesting potential shared transport pathways or mode of action. Additionally, we demonstrated that PfCRT and PfMDR1 could also significantly modulate the pharmacodynamic interactions of the compounds and that the interactions were influenced by the parasite genetic backgrounds. These results provide important information for better understanding of drug resistance and for assessing the overall impact of drug resistance markers on parasite response to ACTs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies

Antimalarial chemotherapy, globally reliant on artemisinin-based combination therapies (ACTs), is threatened by the spread of drug resistance in Plasmodium falciparum parasites. Here we use zinc-finger nucleases to genetically modify the multidrug resistance-1 transporter PfMDR1 at amino acids 86 and 184, and demonstrate that the widely prevalent N86Y mutation augments resistance to the ACT par...

متن کامل

Comparative impacts over 5 years of artemisinin-based combination therapies on Plasmodium falciparum polymorphisms that modulate drug sensitivity in Ugandan children.

BACKGROUND Artemisinin-based combination therapies, including artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP), are recommended to treat uncomplicated falciparum malaria. Sensitivities to components of AL and DP are impacted by polymorphisms in pfmdr1 and pfcrt. We monitored changes in prevalences of polymorphisms in Tororo, Uganda, from 2008 to 2012. METHODS Polymorphic l...

متن کامل

Sustained Ex Vivo Susceptibility of Plasmodium falciparum to Artemisinin Derivatives but Increasing Tolerance to Artemisinin Combination Therapy Partner Quinolines in The Gambia

Antimalarial interventions have yielded a significant decline in malaria prevalence in The Gambia, where artemether-lumefantrine (AL) has been used as a first-line antimalarial for a decade. Clinical Plasmodium falciparum isolates collected from 2012 to 2015 were analyzed ex vivo for antimalarial susceptibility and genotyped for drug resistance markers (pfcrt K76T, pfmdr1 codons 86, 184, and 12...

متن کامل

Discordant patterns of genetic variation at two chloroquine resistance loci in worldwide populations of the malaria parasite Plasmodium falciparum.

Mutations in the chloroquine resistance (CQR) transporter gene of Plasmodium falciparum (Pfcrt; chromosome 7) play a key role in CQR, while mutations in the multidrug resistance gene (Pfmdr1; chromosome 5) play a significant role in the parasite's resistance to a variety of antimalarials and also modulate CQR. To compare patterns of genetic variation at Pfcrt and Pfmdr1 loci, we investigated 46...

متن کامل

Polymorphisms in K13, pfcrt, pfmdr1, pfdhfr, and pfdhps in parasites isolated from symptomatic malaria patients in Burkina Faso

BACKGROUND The emergence of resistance to artemisinin derivatives in western Cambodia is threatening to revert the recent advances made toward global malaria control and elimination. Known resistance-mediating polymorphisms in the K13, pfcrt, pfmdr1, pfdhfr, and pfdhps genes are of greatest importance for monitoring the spread of antimalarial drug resistance. METHODS Samples for the present s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016